5,717 research outputs found

    Studies of b-quark fragmentation

    Get PDF
    I will review new studies of b-quark fragmentation performed at the Z peak by ALEPH and SLD. An improved sensitivity to distinguish between fragmentation model and more accurate measurements of the mean b-hadron scaled energy have been obtained.Comment: 3 pages, 3 figures, presented at XXXth ICHEP, Osak

    Misure di fisica elettrodebole con il quark charm al picco della Z

    Get PDF
    In this thesis charm electroweak measurements at the Z peak with the full statistics collected by ALEPH are presented. The forward-backward asymmetry of the charm quark and the fraction of hadronic Z decays into charm quark pairs, R_c, are measured using D*+ (D*-) mesons as a signature of the charm quark (anti-quark) production. The branching ratio of D0 --> K-pi+, which plays an important role in heavy flavour physics and is here used to extract R_c, is also measured using D* mesons. The kinematics of the decay D*+ --> D0 pi+, followed by the D0 decay in K-pi+, K-pi+pi0 or K-pi+pi+pi-, allows the reconstruction of the decay chain to be performed with high purity. The beauty and charm contribution to the sample is determined by means of a lifetime-mass tag. The asymmetry is extracted from a likelihood fit to the angular distribution of the thrust axis in the selected D* sample. The branching ratio D0 --> K-pi+ is measured by compairing the rate for the reconstructed D*+ --> D0 pi+, D0 --> K-pi+ decay chain and the rate for inclusive soft pion production at low transverse momentum with respect to the nearest jet, which is a clear signature of the D*+ --> D0 pi+ decay. The fraction of hadronic Z decays into charm quark pairs is measured using a double-tag technique, where a charm quark is tagged from the D*'s fully reconstructed and the other one from the soft pion

    Electroweak results from CMS

    Get PDF
    n/

    Object oriented data analysis in ALEPH

    Get PDF
    This article describes the status of the ALPHA^{++} project of the ALEPH collaboration. The ALEPH data have been converted from Fortran data structures (BOS banks) into C^{++} objects and stored in a object oriented database (Objectivity/DB), using tools provided by the RD45 collaboration and the LHC^{++} software project at CERN. A description of the database setup and of a preliminary version of an object oriented analysis program is given.This article describes the status of the ALPHA^{++} project of the ALEPH collaboration. The ALEPH data have been converted from Fortran data structures (BOS banks) into C^{++} objects and stored in a object oriented database (Objectivity/DB), using tools provided by the RD45 collaboration and the LHC^{++} software project at CERN. A description of the database setup and of a preliminary version of an object oriented analysis program is given

    The 17th EFMC Short Course on Medicinal Chemistry on Small Molecule Protein Degraders

    Get PDF
    The 17 th EFMC Short Course on Medicinal Chemistry took place April 23–26, 2023 in Oegstgeest, near Leiden in the Netherlands. It covered for the first time the exciting topic of Targeted Protein Degradation (full title: Small Molecule Protein Degraders: A New Opportunity for Drug Design and Development). The course was oversubscribed, with 35 attendees and 6 instructors mainly from Europe but also from the US and South Africa, and representing both industry and academia. This report summarizes the successful event, key lectures given and topics discussed.</p

    Regional Analysis of the Magnetization Transfer Ratio of the Brain in Mild Alzheimer Disease and Amnestic Mild Cognitive Impairment

    Get PDF
    BACKGROUND AND PURPOSE: Manually drawn VOI-based analysis shows a decrease in magnetization transfer ratio in the hippocampus of patients with Alzheimer disease. We investigated with whole-brain voxelwise analysis the regional changes of the magnetization transfer ratio in patients with mild Alzheimer disease and patients with amnestic mild cognitive impairment. MATERIALS AND METHODS: Twenty patients with mild Alzheimer disease, 27 patients with amnestic mild cognitive impairment, and 30 healthy elderly control subjects were examined with high-resolution T1WI and 3-mm-thick magnetization transfer images. Whole-brain voxelwise analysis of magnetization transfer ratio maps was performed by use of Statistical Parametric Mapping 8 software and was supplemented by the analysis of the magnetization transfer ratio in FreeSurfer parcellation-derived VOIs. RESULTS: Voxelwise analysis showed 2 clusters of significantly decreased magnetization transfer ratio in the left hippocampus and amygdala and in the left posterior mesial temporal cortex (fusiform gyrus) of patients with Alzheimer disease as compared with control subjects but no difference between patients with amnestic mild cognitive impairment and either patients with Alzheimer disease or control subjects. VOI analysis showed that the magnetization transfer ratio in the hippocampus and amygdala was significantly lower (bilaterally) in patients with Alzheimer disease when compared with control subjects (ANOVA with Bonferroni correction, at P < .05). Mean magnetization transfer ratio values in the hippocampus and amygdala in patients with amnestic mild cognitive impairment were between those of healthy control subjects and those of patients with mild Alzheimer disease. Support vector machine-based classification demonstrated improved classification performance after inclusion of magnetization transfer ratio-related features, especially between patients with Alzheimer disease versus healthy subjects. CONCLUSIONS: Bilateral but asymmetric decrease of magnetization transfer ratio reflecting microstructural changes of the residual GM is present not only in the hippocampus but also in the amygdala in patients with mild Alzheimer disease

    Structure-guided design and optimization of small molecules targeting the protein-protein interaction between the von hippel-lindau (VHL) E3 ubiquitin ligase and the hypoxia inducible factor (HIF) alpha subunit with in vitro nanomolar affinities

    Get PDF
    E3 ubiquitin ligases are attractive targets in the ubiquitin-proteasome system, however, the development of small-molecule ligands has been rewarded with limited success. The von Hippel-Lindau protein (pVHL) is the substrate recognition subunit of the VHL E3 ligase that targets HIF-1α for degradation. We recently reported inhibitors of the pVHL:HIF-1α interaction, however they exhibited moderate potency. Herein, we report the design and optimization, guided by X-ray crystal structures, of a ligand series with nanomolar binding affinities

    Imaging of the Inner Zone of Blast Furnaces Using MuonRadiography: The BLEMAB Project

    Get PDF
    The aim of the BLEMAB project (BLast furnace stack density Estimation through online Muons ABsorption measurements) is the application of muon radiography techniques, to image a blast furnace’s inner zone. In particular, the goal of the study is to characterize the geometry and size of the so-called “cohesive zone”, i.e., the spatial region where the slowly downward-moving material begins to soften and melt, which plays such an important role in the performance of the blast furnace itself. Thanks to the high penetration power of natural cosmic-ray muon radiation, muon transmission radiography could be an appropriate non invasive methodology for the imaging of large high-density structures such as a blast furnace, whose linear dimensions can be up to a few tens of meters. A state-of-the-art muon tracking system is currently in development and will be installed at a blast furnace on the ArcelorMittal site in Bremen (Germany), where it will collect data for a period of various months. In this paper, the status of the project and the expectations based on preliminary simulations are presented and briefly discussed

    The MURAVES muon telescope: a low power consumption muon tracker for muon radiography applications

    Get PDF
    Muon Radiography or muography is based on the measurement of the absorption or scattering of cosmic muons, as they pass through the interior of large scale bodies, In particular, absorption muography has been applied to investigate the presence of hidden cavities inside the pyramids or underground, as well as the interior of volcanoes' edifices. The MURAVES project has the challenging aim of investigating the density distribution inside the summit of Mt. Vesuvius. The information, together with that coming from gravimetric measurements, is useful as input to models, to predict how an eruption may develop. The MURAVES apparatus is a robust and low power consumption muon telescope consisting of an array of three identical and independent muon trackers, which provide in a modular way a total sensitive area of three square meters. Each tracker consists of four doublets of planes of plastic scintillator bars with orthogonal orientation, optically coupled to Silicon photomultipliers for the readout of the signal. The muon telescope has been installed on the slope of the volcano and has collected a first set of data, which are being analyzed

    The BLEMAB European project: Muon radiography as an imaging tool in the industrial field

    Get PDF
    The European project called BLEMAB (BLast furnace stack density Estimation through on-line Muons ABsorption measurements), provides for the application of the muon radiography technique in the industrial environment. The project represents a non-invasive way of monitoring a blast furnace and in particular aims to study the geometric and density development of the so-called “cohesive zone”, which is important for the performance of the blast furnace itself. The installation of the detectors is expected in 2022 at the ArcelorMittal site in Bremen (Germany). This paper describes the status of the project, the experimental setup and the first results obtained with preliminary simulations. © 2022 Societa Italiana di Fisica. All rights reserved
    • 

    corecore